Preview

Lex Genetica

Расширенный поиск

The Principle of Inviolability of the Human Genome and Information about the Human Genome

https://doi.org/10.17803/lexgen-2022-1-1-4-19

Аннотация

The principle of inviolability of the human genome is discussed in the context of biomedicine and related areas. The ‘pros’ and ‘cons’ of interference in the human genome are presented in terms of somatic and germ cells, as well as those interventions affecting the human genome at the embryonic stage of development. In connection with the development of synthetic biology, the human genome, as well as its fragments, genes, and genetic information, is increasingly becoming of practical interest for various parties (entities and individuals), and, therefore, need protection, including legal protection. From a systemic approach, the principle of inviolability of the human genome cannot be absolute. The limits of its applicability (force and effect) can be affected by: the degree of development of genetic and information technologies; availability of effective institutions for control over modern technologies; functioning of the mechanisms ensuring biological, information and other types of security; national, cultural, religious peculiarities; established legal and ethical traditions, and practices in a number of sectors and fields of activity (research, medicine, information, etc.).

Об авторе

A. Mokhov
Kutafin Moscow State Law University (MSAL)
Россия


Список литературы

1. Baker, B. (2016). The ethics of changing the human genome. BioScience, 66(4), 267–273. https://doi.org/10.1093/biosci/biw017

2. Baylis, F. (2017). Human germline genome editing and broad societal consensus. Nature Human Behaviour, 1(6), 1–3. https://doi.org/10.1038/s41562-017-0103

3. Belyaletdinov, R.R. (2018). Biotechnological moral enhancement. Chelovek, (6), 33–38. (In Russ.). https://doi.org/10.31857/S023620070002342-3

4. Chuyko, N. (2011). Main approaches of the regulation of genetically modified organisms in the international practice. Sibirsklii Yuridicheskii Vestnik, (1), 160–165. (In Russ.).

5. Coller, B. S. (2019). Ethics of human genome editing. Annual Review of Medicine, 70, 289–305. https://doi.org/10.1146/annurev-med-112717-094629

6. Doudna, J. A. & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096

7. Ena, J. (2005). Prions: who should worry about them? Archives of Medical Research, 36(6), 622–627. https://doi.org/10.1016/j.arcmed.2005.02.004

8. Gajdaj, E. A. & Gajdaj, D. S. (2019). Genetic variety of laboratory mice and rats: history of occurrence, methods of obtaining and control. Laboratory Animals for Science, (4), 78– 85. (In Russ.). https://doi.org/10.29296/2618723X-2019-04-09

9. Hirakawa, M. P., Krishnakumar, R., Timlin, J. A., Carney, J. P. & Butler, K. S. (2020). Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 40(4), BSR20200127. https://doi.org/10.1042/BSR20200127

10. Kalinina, L. E. (2019). Precautionary principle in the food legislation of the European Union. Ocherki noveishei kameralistiki, (2), 13–15. (In Russ.).

11. Kofiadi, I. A. (2008). Genetic resistance to HIV and AIDS development in the population of Russia and neighboring countries. Diss. Cand. Sci. (Biol.). Available at: https://www.dissercat.com/content/geneticheskaya-ustoichivost-k-zarazheniyu-vich-i-razvitiyu-spid-v-populyatsiyakh-rossii-i-so. (In Russ.).

12. Koplin, J. J. & Savulescu, J. (2019). Time to rethink the law on part-human chimeras. Journal of Law and the Biosciences, 6(1), 37–50. http://doi.org/10.1093/jlb/lsz005

13. Koplin, J. & Wilkinson, D. (2019). How should we treat human–pig chimeras, non-chimeric pigs and other beings of uncertain moral status? Journal of Medical Ethics, 45(7), 457–458. http://doi.org/10.1136/medethics-2019-105644

14. Li, H., Yang, Y., Hong, W., Huang, M., Wu, M. & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), 1–23. https://doi.org/10.1038/s41392-019-0089-y

15. Maeder, M. L. & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/mt.2016.10

16. Maleina, M. N. (2019). The role of legal principles in eliminating and minimizing the risks of the use of genomic technologies. Lex Russica, (8), 121–128. (In Russ.). https://doi.org/10.17803/1729-5920.2019.153.8.121-128

17. Mokhov, A. A. (2017). Precautionary principle in biomedicine. Meditsinskoe pravo, (1), 5–10. (In Russ.).

18. Mokhov, A. A. (2020). ‘Synthetic’ genome and the products obtained therewith as new objects of legal relations. Courier of Kutafin Moscow State Law University (MSAL), (5), 51–59. (In Russ.). https://doi.org/10.17803/2311-5998.2020.69.5.051-059

19. Mokhov, A. A. (2021). Genetic technologies in medicine and biosafety. In: Mokhov, A. A., Mokhov, O. V. & Sushkova, O. V. (eds.). Pravovye osnovy bioėkonomiki i biobezopasnosti [Legal foundations of bioeconomics and biosafety]. Moscow: Prospekt Publ., pp. 216– 222. (In Russ.).

20. Mokhov, A. A., Levuskhin, A. N. & Yavorsky, A. N. (2020). Genome Editing of Human Embryo: Allow or Prohibit? Journal of Advanced Research in Law and Economics, 11(2), 483–490. https://doi.org/10.14505/jarle.v11.2(48).21

21. Mokhov, A. A. & Yavorskiy, A. N. (2019). Combination of private and public interests in legal regulation of genetic technologies. Remedium, (9), 48–51. (In Russ.).

22. Mustafin, R. N. & Khusnutdinova, E. K. (2018). Interrelation of prions with non-coding RNAs. Vavilovskii Zhurnal Genetiki i Selektsii=Vavilov Journal of Genetics and Breeding, 22(4), 415–424. (In Russ.). https://doi.org/10.18699/VJ18.377

23. Ormond, K. E., Mortlock, D. P., Scholes, D. T., Bombard, Y., Brody, L. C., Faucett, W. A. et al. (2017). Human germline genome editing. The American Journal of Human Genetics, 101(2), 167–176. https://doi.org/10.1016/j.ajhg.2017.06.012

24. Palazzo, A. F. & Gregory, T. R. (2014). The case for junk DNA. PLoS genetics, 10(5), e1004351. https://doi.org/10.1371/journal.pgen.1004351

25. Popova, O. V. (2015). Biotechnological design of the natural and artificial: the social aspect. Znanie. Ponimanie. Umenie, (2), 161–171. (In Russ.). https://doi.org/10.17805/zpu.2015.2.17

26. Rassolov, I. M. & Chubukova, S. G. (2019). Intra-industry principles of genetic information processing. Actual Problems of Russian Law, (5), 98–110. (In Russ.). https://doi.org/10.17803/1994-1471.2019.102.5.098-110

27. Rassolov, I. M., Chubukova, S. G., Mokhov, A. A. & Shagieva, R. V. (2020). Genetic information and personal data under conditions of digital transformation. International Journal of Psychosocial Rehabilitation, 24(7), 284–292.

28. Regalado, A. (2019, April 10). Chinese scientists have put human brain genes in monkeys— and yes, they may be smarter. MIT Technology Review. Available at: https://www.technologyreview.com/2019/04/10/136131/chinese-scientists-have-put-human-braingenes-in-monkeysand-yes-they-may-be-smarter/

29. Robakidze, M. (2021, July 26). Human gene was implanted in agricultural plants. Mir 24. Available at: https://mir24.tv/news/16468145/selskohozyaistvennym-rasteniyam-vnedrili-chelovecheskii-gen. (In Russ.).

30. Rudinskiy, F. M. (2006). Nauka prav cheloveka i problemy konstitucionnogo prava [The science of human rights and the problems of constitutional law]. Moscow: Mir Publ. (In Russ.).

31. Savoshchikova, E. V. & Voronina, I. A. (2019). Privacy as a principle of constitutional and legal regulation of biomedicine. Meditsinskoe pravo, (1), 23–28. (In Russ.).

32. Vasenkin, A. V. & Vasilyeva, N. A. (2020). Precautionary principle in NBIC technologies. Eurasian Law Journal, (6), 474–475. (In Russ.).

33. Walters, R. (2010). Eco crime and genetically modified food. Routledge-Cavendish. https://doi.org/10.4324/9780203844151

34. Wells, J. (2011). The myth of junk DNA. Vol. 85. Seattle, WA: Discovery Institute Press. Available at: https://www.discovery.org/m/2019/01/Myth-of-Junk-DNA-Notes.pdf

35. Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., Kimm, L. R., Cheng, Z., Horsman, D. E. et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. The American Journal of Human Genetics, 80(1), 91–104. https://doi.org/10.1086/510560

36. World Health Organization. (2000). WHO infection control guidelines for transmissible spongiform encephalopathies: report of a WHO consultation, Geneva, Switzerland, 23-26 March 1999 (No. WHO/CDS/CSR/APH/2000.3). Available at: https://apps.who.int/iris/handle/10665/66707

37. World Health Organization. (2021). Human genome editing: recommendations. Available at: https://www.who.int/publications/i/item/9789240030381

38. Yavorskiy, A. N. (2021). The history of the development of genetic technologies: a short narrative. In: Mokhov, A. A. & Sushkova, O. V. (eds.). Bioekonomika: doktrina, zakonodatel ʹstvo, praktika [Bioeconomy: doctrine, legislation, practice]. Moscow: Prospekt Publ., pp. 127–152. (In Russ.).

39. Yudin, B. G. (2016). Technoscience and the ‘improvement’ of human beings. Epistemology & Philosophy of Science, 48(2), 18–27. (In Russ.).

40. Zuev, V. A. (2013). Prions – a special class of causative agents of slow infections in humans and animals. RMZh - Russkii Meditsinskii Zhurnal, (30), 1559–1566. (In Russ.). Available at: https://www.rmj.ru/articles/nevrologiya/Priony__osobyy_klass_vozbuditeley_medlennyh_infekciy_cheloveka_i_ghivotnyh/


Рецензия

Для цитирования:


  . Lex Genetica. 2022;1(1):4-19. https://doi.org/10.17803/lexgen-2022-1-1-4-19

For citation:


Mokhov A.A. The Principle of Inviolability of the Human Genome and Information about the Human Genome. Lex Genetica. 2022;1(1):4-19. https://doi.org/10.17803/lexgen-2022-1-1-4-19

Просмотров: 712


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 3034-1639 (Print)
ISSN 3034-1647 (Online)