Preview

Lex Genetica

Advanced search

The Principle of Inviolability of the Human Genome and Information about the Human Genome

https://doi.org/10.17803/lexgen-2022-1-1-4-19

Contents

Scroll to:

Abstract

The principle of inviolability of the human genome is discussed in the context of biomedicine and related areas. The ‘pros’ and ‘cons’ of interference in the human genome are presented in terms of somatic and germ cells, as well as those interventions affecting the human genome at the embryonic stage of development. In connection with the development of synthetic biology, the human genome, as well as its fragments, genes, and genetic information, is increasingly becoming of practical interest for various parties (entities and individuals), and, therefore, need protection, including legal protection. From a systemic approach, the principle of inviolability of the human genome cannot be absolute. The limits of its applicability (force and effect) can be affected by: the degree of development of genetic and information technologies; availability of effective institutions for control over modern technologies; functioning of the mechanisms ensuring biological, information and other types of security; national, cultural, religious peculiarities; established legal and ethical traditions, and practices in a number of sectors and fields of activity (research, medicine, information, etc.).

For citations:


Mokhov A.A. The Principle of Inviolability of the Human Genome and Information about the Human Genome. Lex Genetica. 2022;1(1):4-19. https://doi.org/10.17803/lexgen-2022-1-1-4-19

Introduction

The human genome became the subject of research in the second half of the 20th century following revolutionary discoveries in the field of genetics, especially those clarifying the role of deoxyribonucleic acid (DNA) as a carrier of genetic information. At the turn of the century, fundamental work on decoding the human genome was completed; by 2018, a correlation between a number of genes and gene mutations with genetically determined human diseases was identified (Yavorskiy, 2021). Special mention should be made of the wide spread of genome editing technologies in scientific practice, in particular, CRISPR/Cas9 or ‘genetic scissors’ (Doudna & Charpentier, 2014).

From that moment on, it became possible to talk not only about the research in the field of biology and medicine, but also about attempts to control the human genome and genetic information for resolving medical and other issues. In the field of medicine, problems involved direct human cell genome editing in vitro or in vivo for disease treatment have begun to be set and accomplished (Hirakawa, Krishnakumar, Timlin, Carney, & Butler, 2020; Maeder & Gersbach, 2016; Li et al., 2020).

The modern genetic technologies and the potential thereof have triggered the scientific discussion regarding the future ‘destiny’ of the human genome. The present work is dedicated to legal and ethical issues associated with this discussion.

Genetic technologies and human genome editing: background

At the initial stage of the development of genetic technologies, when the human genome is being used or even synthesized based on the available data about it, two unequal groups can be distinguished: ‘natural’ or ‘synthetic’ human genome (Mokhov, 2020), whose fragments are used to accomplish medical (diagnostics, prevention, treatment) or non-medical (science and research, education, military affairs, IT, crime, etc.) tasks. In terms of potential regulation, a further distinction should be made between the ‘working’ human genome (pertaining to public domain material used in science and research, education, etc.), the genome of a group (a lineage [genus], an ethnic group, population living separately in a certain territory), and that of a specific individual (constituting personal benefit, personal data).

  • bullit 1
  • bullit2
  • bullit 3
  • bullit 4

We will limit our discussion in this paper to the genome of a particular individual, as well as, in some instances, examples related to the ‘working’ genome. These distinctions form the basis for the possible construction of models and the opportunity for resolving issues of legal regulation.

Research on the creation of new biological objects using the genome and (or) available information about the genome of microorganisms or viruses has been conducted since early 21st century. For instance, in 2002, poliovirus had already been synthesized, and in 2005, the possibility of recreating a strain of the influenza virus – namely, the ‘Spanish flu (which triggered a pandemic just over a hundred years ago) – was demonstrated. In 2015, an article on the synthesis of CHC014 hybrid virus (similar to SARS-CoV-2 coronavirus) was published, while 2018 saw the synthesis under laboratory conditions of a horsepox virus very similar to the natural smallpox virus, the causative agent of a particularly dangerous human infection.

Advances in synthetic biology prompted a number of scientists to conduct a fairly wide range of experiments with the human genome. Recently, it was reported that a human gene responsible for obesity had been introduced into the ribonucleic acid (RNA) of some plants. The experiment demonstrated that this modification results in larger potato and rice specimens (Robakidze, 2021). Reports were also made concerning the insertion of a human gene into the brain of a monkey (Regalado, 2019). The scientists noted an increase in the number of neurons along with other noticeable, objective changes.

Currently, other work is underway to create chimeras with human genome insertions. There are attempts to create biomodels as close as possible to human beings by introducing certain genes into animal tissues and organs. On the one hand, such biomodels can make a significant contribution into the creation of new pharmaceuticals and products for other medical-purposes, while, on the other hand, they potentially allow the creation of highly specific pathogens that can be used as weapons of mass destruction or by bioterrorists.

In the future, hybridisation involving the emergence of chimeras containing some parts (from cells to tissues and organs) belonging to other species cannot be ruled out. Although experiments to create chimeras have been ongoing for some time, the presence of formidable technical barriers prevented significant practical and (or) scientific results. However, modern technologies open up new possibilities. Researchers are already working on creating human-pig chimeras (for growing organs for specific customers), and human-monkey chimeras (for transplantation, and creation of organisms with predetermined properties in terms of mass, behaviour, etc.) (Koplin & Wilkinson, 2019; Koplin & Savulescu, 2019).

Along with the potential for medicine (increasing the availability of donor organs and tissues while reducing the risk of transplant rejection), emergence of new biological objects or even biological subjects (quasi-subjects) possessing unique, previously unknown properties and abilities becomes possible. Such objects, and – even more so – subjects, can have a significant impact on various groups of social relations, including established traditional, family and other values.

As we can see, the genome, including the human genome and parts thereof, and individual genes, as well as the genetic information about the human genome, can already be used in scientific research and practice to solve various problems that are not directly related to the purpose of the genetic program that was established by evolution for human reproduction.

Therefore, for objective reasons, experiments with the genome and genes are not harmless – neither of a neutral, nor of a unequivocally positive nature – at least in terms of ensuring biological safety and biological diversity (Baker, 2016; Coller, 2019). It is also impossible to disregard the subjective factors – socio-cultural, religious and other attitudes on the part of the population, which, on the whole, is wary of any experiments with living matter. Such technologies definitely have the potential to change ways of meeting people’s needs – if not such needs themselves – in a short time. Besides, the very possibility of achieving respect, recognition, and self-realisation in a ‘natural’ way – through the use of the entire arsenal of natural and acquired properties or qualities (intellectual, will-related, etc.) of a person – is questioned. Those who have access to new technologies (e.g., through membership of a certain group, or practicing a certain profession, or having sufficient funds, etc.) become tempted to obtain a tangible result, to achieve a certain goal, earlier than others. An illustrative example is high-performance competitive sport, which – despite measures taken by international and national anti-doping, sports, public and other organisations – continues to be shaken by doping scandals.

Debates regarding genetically modified organisms (GMOs) and the permissible limits of their use by human beings as a food source are ongoing (Walters, 2010). However, in the instance under consideration, a rapid artificial erasure of interspecies barriers and boundaries is taking place, which can result in emergence of new biological objects, living objects of nature, with properties that are not characteristic of a particular plant or animal, as well as products obtained therefrom through the use of new technologies. All this is happening against the backdrop of an overall increase in the biomass formed by human beings and a decrease in the ‘natural’ biomass (i.e., wild animals and plants, the reduction of the populations and species of which is proceeding at an unprecedented rate).

In this connection, recent publications have raised issues of balancing the interests of the key subjects of [stakeholders in] this sphere (scientists, business, citizens, the state), effective control over genetic and other modern technologies, classifying some of them as dual-use technologies (Mokhov & Yavorskiy, 2019), and the need to find a scientifically valid (substantiated) and practically realisable way out of the vicious – pathological – circle of growing environmental and other problems of the current civilisation.

A look at the existing legal and ethics-related documents reveals that most of them are rather out-of-date due to their failure to fully take into account emerging technological challenges and threats. For example, the Convention on Biological Diversity (Rio de Janeiro, 5 June 1992)1 recognises the intrinsic value of biological diversity as well as the genetic values of biological diversity and its components. Genetic resources are classified by the document as biological resources offering actual and potential value. Here, it is assumed that genetic research and experiments should be carried out under state control. Each party to the Convention develops national strategies, plans or programs for the conservation and sustainable use of biological diversity.

The Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (adopted by the Committee of Ministers of the Council of Europe on 19 November 1996)2 is focused on protecting the dignity and identity of all human beings, guaranteeing respect of their integrity and other rights and fundamental freedoms with regard to the application of biology and medicine. The Preamble to the document points out that the misuse of biology and medicine may lead to acts endangering human dignity. It also emphasizes that progress in biology and medicine should be used for the benefit of present and future generations. The articles of the Convention are mainly aimed at regulating the relations in the sphere of biomedicine, and certain medical interventions. Article 13 of the Convention is dedicated to the medical issues related to the interventions seeking to modify the human genome.

According to the Federal Law of the Russian Federation No. 86-FZ dated 5 July 1996 ‘On State Regulation in the Field of Genetic Engineering Activities’3, the concept of genetic engineering includes technologies associated with extracting genes from an organism, performing manipulations with genes, as well as involving the introduction of genes into other organisms. The list of the extracted and (or) introduced genes, as well as the organisms, is not defined by the Law. Importantly, it codifies the principle of the safety of citizens (individuals) and the environment in course of genetic engineering. However, the mechanisms for implementing this principle – especially in terms of research and experimenting – are not fully commensurate with the level of the existing risks. Article 7 establishes the levels of the risk associated with the potentially harmful effects of genetic engineering, but only for human health.

Legislators made an attempt to settle the issues of ensuring biological safety, which was reflected in Federal Law No. 492-FZ dated 30 December 2020 ‘On Biological Safety in the Russian Federation’4. This document cites genetic manipulations which may potentially result in the emergence of pathogenic biological agents, strains of microorganisms, or viruses. The concept of a source of biological hazard includes the objects created or emerging as a result of implementation of certain types of activity or uncontrolled use of genetic materials and synthetic biology technologies. Among the measures aimed at protecting the population and the environment from the effects of hazardous biological factors, Article 9 mentions the prevention and preclusion of technological hazards, including the potential uncontrolled use of genetic materials and synthetic biology technologies. However, this measure has not received further development in the Law.

Although it would be also possible to cite a few more regulations governing genetic technologies, we would see that they neither contain any direct restrictions or prohibitions related to the activities with the human genome, nor establish a necessary and sufficient set of mechanisms ensuring proper observance thereof.

Currently, the circulation of genetic information in Russia takes place based according to the existing legislation concerning information, information technologies, and protection of secrets (medical, trade, etc.). The insufficiency of the regulatory framework governing the relations associated with the circulation of genetic information is noted as being due to its peculiar nature (Rassolov et al., 2020).

General aspects associated with the principle of inviolability of the human genome

In connection with the above, the issue of formulating the principle of inviolability or integrity of the human genome, as well as information (data) about the genome of a particular individual, can be brought up for discussion for the sake of both doctrine and legislation. Russian researchers are becoming increasingly aware of the need to formulate the legal principles in connection with the development of genetic and information technologies (Maleina, 2019).

Along with privacy, the principle of personal integrity is well known to the Russian legal doctrine (Rudinskiy, 2006), the legislation (e.g., Article 10 of the Criminal Procedure Code of the Russian Federation; paragraph 7, Article 3 of Federal Law No. 149-FZ dated 27 July 2006 ‘On Information, Information Technologies and Information Protection’), and judicial practice (e.g., Resolution of the Constitutional Court of the Russian Federation No. 20-P dated 24 May 2018 ‘On checking the constitutionality of Article 435 of the Criminal Procedure Code of the Russian Federation in connection with the claims submitted by citizens D. and K.’; Resolution of the Constitutional Court of the Russian Federation No. 8-P dated 28 June 2007 ‘On checking the constitutionality of Article 14.1 of the Federal Law ‘On Burial and Funeral Business’ and the Regulation with regard to burial of persons whose death occurred as a result of suppression of a terrorist act committed by them in connection with the claim submitted by citizens K.I. Guziev and E.Kh. Karmovaya’). In recent years, the principle of integrity has been becoming a focus of attention in biomedicine (Savoshchikova & Voronina, 2019), especially in the context of the risks associated with the implementation of genetic, information and other technologies in medicine (Rassolov & Chubukova, 2019), healthcare and related spheres of activity.

The logic behind the relationship ‘human genome – person – personal integrity’ is as follows. The human genome comprises a biological code (strictly defined, fixed, sustainable, reproducible, and inherited information) imparting a person (a future person as well) with heredity and variability comprising fundamental properties of a living being. The code of a specific genetic subject (individual) is unique. Heredity has a significant impact on the formation of an organism, a person as a whole, especially at the early stages of development. Some parameters or features of an organism (for example, its height) are determined by genes to a large extent, while some others – to a moderate or insignificant extent. The human psyche, character and intelligence depend on many factors (both predetermined and acquired in course of development, upbringing/education, training). Many human diseases and the severity thereof are also determined by various aspects (heredity (primarily for monogenic ones), lifestyle (diet, habits, etc.), environment). Despite the very high similarity between the genomes of human beings and the fact that the planet is already inhabited by several billion people, each individual has characteristics that render him or her individual, unique and inimitable. Due to the large volume of the human genome, the number of individual differences can be quite significant – up to several million out of about six billion symbols of the overall genome (Wong et al., 2007).

Variability is an independent property of a daughter (offspring) organism allowing it to differ from the parental forms and change its properties under the influence of environmental factors. Such changes can be both non-inherited and inherited. Inherited changes may turn out to be useful, in which case their ‘owner’ or ‘carrier’ may gain certain advantages. However, ‘breakdowns’ of varying degrees occur more often (manifesting themselves in changes that are compatible or incompatible with life).

Due to the existing direct and indirect connections, even apparently insignificant interventions into the human genome may affect the ontogenesis of the organism or its personality development, as well as the emergence and course of various human diseases. It should also be noted that the purpose of many genes (especially of the so-called ‘junk’ DNA) has yet to be fully clarified. The mechanisms of variability have also been insufficiently studied (Palazzo & Gregory, 2014; Wells, 2011).

Concerning established relationships, the following examples may be cited. Since the beginning of the 21st century, biologists around the world have been increasingly using ‘knockout’ laboratory animals (Gaidai & Gaidai, 2019). Such animals are obtained through destroying, switching off, ‘knocking out’ an individual gene, thus obtaining a biological model (including biological models of some diseases) for subsequent studies and experiments.

To date, a large number of monogenic diseases caused by gene mutation and leading to severe diseases (galactosemia, phenylketonuria, leucinosis, porphyria, tyrosinemia, haemolytic anaemia, etc.) have been described. The active search for drugs for treating such diseases, along with multifactorial human diseases, is underway.

The first scientist to openly interfere with the genome of a future human being at an early stage of development and to make an explicit statement about it (in 2018 at an international research platform) was He Jiankui from China. When combined with in vitro fertilisation (IVF) procedures, such editing of the human genome at the embryonic stage, effectively cutting out the CCR5 gene with ‘genetic scissors’, is justified by the discovery that two girls with a mutation in this gene were born with HIV immunity. Although this genetic mutation is known, it rarely occurs in the human population (Kofiadi, 2008).

Based on the presented analysis of specialised publications, as well as relevant legislation and judicial practice, it appears to be possible to present for discussion the following tentative definition of the principle of inviolability of the human genome. The principle of inviolability of the human genome is a legal idea designed to ensure the protection of the interests of a particular individual, as well as other individuals, from any potential interference with or modifications to the human genome. A human being has the right to the inviolability of their genome. This right is an integral element of their right to liberty, since it determines (as we have discussed) their individuality.

The above definition can be fully applied to the information about the genome of a particular person comprising an individual code characterising heredity (potential/inclinations) and variability (within certain limits) of an individual. Thus, it appears to be necessary to introduce a legislative ban on free performance of any actions/manipulations with the human genome, as well as to implement effective mechanisms protecting the rights of an individual in the event if someone, without sufficient legal grounds, attempts to interfere with the human genome.

While the protection of genetic information is a more challenging task, it is resolvable by establishing a legal framework for ensuring inviolability of genetic information about a specific person, the limits of possible interference/intervention, the range of subjects (participants) and the procedures/mechanisms for genetic information protection, as well as the limits of permissible genetic information circulation.

However important for people, medicine, pharmaceutics and healthcare, such an understanding of the principle of inviolability would be an incomplete and excessively narrow understanding of the principle of inviolability of the human genome. As well as individual genes, we have also discussed the possibility of using the human genome or some fragments thereof to accomplish the tasks completely unrelated to genetic manipulations with a specific person, i.e., by introducing genomes or genes into animals or plants to creating biorobots, ‘human-like’ artificial intelligence systems, or chimeras.

Since science is making its tentative first steps in this area, the amount of knowledge about the human genome is rather small. Nevertheless, it is growing rapidly. Thus, while the real prospects for ‘non-medical’ application of technologies based on or using the human genome are not yet clear, the risks are already visible. For example, since prions and prion diseases have not yet been fully studied (Zuev, 2013), people working in research laboratories or medical organisations are running the risk of contracting rare and incurable diseases (Ena, 2005). At the same time, some publications draw attention to the existing links between a certain sequence of genes, RNA, prions and development of certain diseases (Mustafin & Khusnutdinova, 2018). Recognising the dangers of prion diseases, in 1999, the World Health Organization (WHO) issued infection control guidelines for transmissible spongiform encephalopathies with the aim of reducing risks and ensuring control (WHO, 2000).

The existence of barriers between species (e.g., between animals and humans) are also well known, along with various possibilities of overcoming them. Whether conscious or unintentional, the overcoming (crossing) of such barriers as a result of current research, economic or other activities risks the emergence of increasingly numbers of human diseases.

In line with the precautionary principle (Vasenkin & Vasilyeva, 2020; Kalinina, 2019; Chuyko, 2011), the widespread use of the human genome or genes in manipulations with plants, animals, or ‘artificial’ biological objects should be either completely prohibited or limited to specific kinds of research carried out based on the dedicated temporary regulations (provisions of law) under strict governmental and public control. The procedure for such activities, if they are allowed at all, should be permission-based. For instance, Article 6 of the Guidelines for Ethical Principles in Human Embryonic Stem Cell Research (2003) prohibits the combination of human germ cells with cells of other species of living beings.

Particular risks are posed by biological chimeras – artificial intelligence systems combined or integrated with biological objects. Thus there might be a need for a complete or partial legislative moratorium on the development of certain vectors of manipulation with the human genome involving the admissibility of some kinds of research, work with ‘new’ objects at certain stages of their lifecycle (as a rule, initial stages) and in closed systems (both natural, and modified, as well as those created based on the publicly available information about the human genome).

Returning to the principle of inviolability of the human genome in its narrow sense, it is necessary to determine the possible boundaries of application of this principle, since it is within the boundaries established by law and ensured by the government that inviolability – as a property – acquires actual sense.

The development of genetic technologies for solving medical problems is currently following two main directions: editing of the natural human genome and chemical synthesis of the human genome.

Chemical synthesis of the human genome consists in the reproduction of DNA or individual nucleotides. In general, it refers to the writing and subsequent reproduction of a genetic program under specially created conditions. This direction is developing within the framework of synthetic biology, which is still making its first steps dealing with such objects as microorganisms and viruses. In this instance, the tasks to be resolved are the same as in the case of the natural genome.

Natural genome editing already allows deleting, moving, inserting or replacing DNA fragments in the human genome. It is possible to distinguish between the following three main forms: in vitro somatic cell genome editing, where somatic cells ­previously extracted from the organism are subsequently returned into the organism; in vivo somatic cell genome editing directly inside the organism (in situ); embryo genome editing.

The principle of inviolability of the human genome and somatic cell editing

Somatic cell editing (regardless of the specific technology) is under actively development both globally and in Russia, albeit already involving some potential differences in legal regulation. When it comes to diseases, there are hardly any sufficient arguments against such technologies and the products created through the use thereof. The practice and the legislators steer the healthcare industry and society towards reducing morbidity and mortality, as well as increasing longevity (life expectancy) and quality of life.

Federal Law No. 323-FZ of 21 November 2011 ‘On the Fundamentals of Public Health Protection in the Russian Federation’5 codifies the principles of priority of the patient’s interests in course of healthcare provision, healthcare accessibility, and inadmissibility of refusal to provide healthcare.

The Decree of the President of the Russian Federation No. 680 of 28 November 2018 ‘On Genetic Technologies Development in the Russian Federation’6 encourages the government to accelerate the development of genetic technologies, including technologies for genetic editing, and development of biological medications, diagnostic systems and immunobiological products for healthcare.

The Decree of the President of the Russian Federation No. 474 of 21 July 2020 ‘On the National Development Goals of the Russian Federation for the Period up to 2030’7 establishes preservation of the population, public health and well-being of people as national goals.

Among the key ‘cons’ of the active introduction of genetic technologies into medical practice, the following arguments can be made: high risks for the health and life of patients associated with the new technologies, as well as the lack of sufficient evidence demonstrating the safety thereof; the impossibility to fully control all the occurring processes at the current level of science, research and technology; the possibility of ‘non-medical’ application of genetic technologies meant for solving clinical problems by healthcare professionals; violations of the rights of citizens due to the gaps in the existing national legislation (Mokhov, 2021).

Most of the above-presented arguments are not new. The development of innovative medical technologies is always highly risk-prone: such technologies cannot in principle be fully controlled, especially at the initial stages (phases). Further on, as experience is gained and accumulated, and the technology and the side effects are monitored, a number of parameters and indicators become capable of clarification and more precise specification. This is common practice for pharmaceuticals, and medical products, as well as some other products and technologies. Another issue involves the effective protection of the citizens’ rights. Here, a sufficient resource of means and mechanisms, comprising various expert assessments, as well research (in terms of efficiency, safety, ethics, etc.) to support risk insurance and liability insurance, has been accumulated. However, in order to make such development anticipatory of future development, it is necessary to advance the development of the regulatory framework in the field of biomedical and genetic research and experiments. Bioethical norms have an important role to play here due to their high application potential when used correctly. Issues in determining the benefits and risks of technologies, ensuring compliance with the principles of ‘do good’ and ‘do no harm’ should be given the utmost attention at the national level, requiring the development of an ethics-related and legal base governing the lifecycle of new technologies at critical stages.

Since transparency is one of the conditions for public discussion and formation of the correct vector of their application in a particular society, a separate issue arises concerning the provision of proper information support for the lifecycle of genome editing technologies.

The issue of non-medical application of human genome editing technologies is really quite urgent. Biohacking is already well-known. It is difficult to overestimate the role of law, along with research and professional ethics, in mitigating the risks of non-medical application of genetic technologies. There are many precedents for the development and adoption of special legislation restricting the circulation and non-medical use of narcotic drugs, comprising psychotropic and intoxicating substances, as well as legislative penalties for violations in this area (up to criminal liability). Suffice it to recall such acts as Federal Law No. 3-FZ of 8 January 1998 ‘On Narcotic Drugs and Psychotropic Substances’8 or Federal Law No. 472-FZ of 29 December 2020 ‘On Restriction of Nitrous Oxide Turnover in the Russian Federation’9.

Simultaneously with the legal measures and the work of government authorities in this sphere, the science and research professional community should be actively involved in the control over and application of the technologies. This requires further development of self-regulation and self-governance in the sphere of science/research and certain other types of professional activities (biology, medicine, information sector, etc.), as well as institutionalisation of ethics and bioethics.

The World Health Organization (WHO) also demonstrated its awareness of the problems that arise and are discussed in connection with the development of genetic technologies. Human genome editing led to the creation of a dedicated Advisory Committee under the auspices of WHO. In the summer of 2021, its first recommendations were published (WHO, 2021). The document developed by the experts highlights the need to maximise the potential benefits of and minimise the potential harm from the human genome editing technologies. In other words, in a way different from what is customary for lawyers, it speaks about the need to ensure a certain balance of interests, about a possibility of developing technologies in general subject to mitigation of the risks already known to researchers and practitioners as well as of any potential other risks.

Attention is also paid to the choice of priorities, i.e., the effort application vector, which may differ in different countries (depending on the most significant tasks on their agenda). Reportedly, one of such priorities for some regions and their healthcare systems is sickle cell anaemia.

The absence of serious problems hampering the application of the technology under consideration for medical and healthcare needs is also highlighted by the launch and support of a pilot project dedicated to somatic genome editing research.

At this stage, experts are concerned about the so-called ‘ethics dumping’ consisting in weak ethical control over such research in some countries which can lead to ‘science tourism’ (migration of certain types of research and experiments to the countries which do not pay due attention to compliance with ethical standards and procedures).

Russia belongs to the category of countries where ethics reviews (expert assessments), ethical control over science-and-research activities, clinical research, trials, and experiments are still under development. However, a legal framework exists for regulating the activities of ethics committees (councils) in the sphere of clinical trials of pharmaceuticals (drugs), biomedical cell products, and medical devices. Ethical standards in the sphere of research are generally underdeveloped. Thus, Russia needs to urgently build and fine-tune the ethical foundations for modern technologies (primarily, those involved in biological and information spheres).

The principle of inviolability of the human genome and germline editing

Germline genome editing has a lot in common with somatic editing. In essence, it acts as a method or means for preventing hereditary diseases. In this connection, most of the ‘pros’ and ‘cons’ will tend to coincide (Baylis, 2017; Mokhov, Levuskhin, & Yavorsky, 2020; Ormond et al., 2017). However, there are also fundamental differences. First, such editing entails or may entail hereditary changes. Second, it gives rise to the problems concerning the parties to (participants of) the arising legal relations, as well as the problems with the corresponding actual and potential legal consequences.

Article 13 of the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (Adopted by the Committee of Ministers of the Council of Europe on 19 November 1996)10 mentions the admissibility of interventions in the human genome for preventive, diagnostic and therapeutic purposes, but at the same time points out that such interventions should not be aimed at introducing any modifications in the genome of any descendants. The number of countries that have ratified this document to date remains disappointingly low. The discussion about the individual articles thereof, which has continued for the last quarter of a century, hinges on the consideration whether, if a defective gene leads to hereditary disease development, it would not be better to make the necessary modifications or corrections in order to make it normal. The accumulation of defects or breakdowns and increase in the number of ‘broken’ genes leads to diseases for a particular person, as well as being capable of interrupting the lineage (procreation). Consequently, certain obstacles for the performance of such a person’s biological functions arise. While this occurred earlier due to impossibility of correction, when such corrections become possible due to the emerging legal or ethics-related prohibitions, how ethical can it be to prohibit such activities at the legislative level? This remains an extremely difficult point to answer. However, the proposed introduction of a moratorium (temporary ban) is justified by the lack of current knowledge about the human genome, individual genes, and the possible interactions between them, as well as by in terms of the imperfection of technologies and a lack of a proper ethical and legal basis for such manipulations at the level of individual countries, as well as at the supranational level.

There is also another aspect of human genome editing at the early stages of development associated with modifying it in the way which is supposed to create benefits for a human being (individual). Such modifications can be both within the limits of a known norm with its variations, and beyond its limits. How ethical and acceptable are the interventions in the human genome aimed at creating prerequisites for improvement of a human being? Such interventions can be directly beyond the scope of medical (therapeutic) indications/grounds, or only relatively (‘at a stretch’) fall within such scope. These issues are the subject of active scientific debates of philosophers and bioethicists (Belyaletdinov, 2018; Popova, 2015; Yudin, 2016). Due to the contradiction with the fundamental legal principles (equality, justice, etc.), at the current stage of civilisation development, at the existing level of science/research and technologies, as well as within the existing segregation, lawyers are more likely to give a negative answer, rather than a positive one.

When it comes to somatic editing, the parties to the arising legal relationship are clear: as a rule, they are between a doctor and a patient or the patient’s legal representative (for individuals under a certain age or recognised incapacitated). Their respective rights and obligations, as well as the procedures for obtaining voluntary informed consent to intervention, are enshrined in legislation. However, when the genome of an embryo or an individual cell is edited, the parties to legal relationship are not currently defined in the Russian legislation. In some countries, the embryo is recognised as a subject of some rights (or a party to some legal relationship) from a certain period of development. In any case, the following questions to be resolved arise: In whose interests is the customer acting? From whom and how is it possible/necessary to obtain consent for participation in research / in an experiment? How can the interests of the unborn child be protected at this stage? Who and under what acts/regulations exercises control over and assessment of the possible intervention into the embryo’s genome? Should the information on the performed intervention be stored and for how long? Who should have access to the information about the performed editing and on what basis? There are no clear answers to most of these questions yet. A broad discussion involving researchers, policymakers, and legislators is needed in order to get the answers that would satisfy the society.

Although the aforementioned recommendations by WHO experts (World Health Organization, 2021) are very cautious about the editing of the human genome that can be inherited, they do not completely rule out the future possibility of related research being carried out subject to ensuring transparency and adequate supervision/control. Therefore, further research in this area is required with wide coverage in research-related and general publications, as well as in mass media.

Conclusion

In connection with development of genetic technologies, and the attempts to widely use the genome, its fragments, or individual human genes, achieving the goals and objectives facing society and the State in terms of safeguarding the population and the population’s health, ensuring biological diversity, as well as biological and other kinds of safety, raises the issue of inviolability of the human genome, the determination of the boundaries of this principle, and appropriate mechanisms for ensuring strict observance thereof.

In a narrow sense, it is proposed that the principle of inviolability of the human genome be understood as a legal idea aimed at ensuring the protection of the interests of a particular individual, as well as other individuals, from any potential intrusion into (interference with) the human (individual’s) genome, as well as prohibiting certain modifications to it. The same applies to the genetic information about the human (individual’s) genome, taking into account the peculiarities of information as an object of rights and legal protection.

In a broad sense, the principle of inviolability of the human genome implies general prohibition on the use of the human genome, as well as its fragments, genes, and genetic information. However, exceptions to this principle are possible and cannot be completely ruled out. Nevertheless, they must be directly established by federal law.

The principle of inviolability of the human genome is relative, rather than absolute. Its boundaries can be flexible and influenced by: tasks solved by the government; the significance of such tasks for the individual, society, or the country; the need for genetic technologies, or for genome manipulation for the sake of citizens, medicine, and society; the level of development of the technologies through which the human genome is used; the degree of accuracy, selectivity, and safety thereof; sociocultural, religious and other peculiarities; established legal and ethical traditions; the development and efficiency of the mechanisms of control over the technologies using the human genome or the information about it.

Technologies for editing the human genome should be paid close attention, requiring ethical and legal support for their life cycle at critical stages (research, experiments, innovations, new technologies application monitoring).

 

1. Ratified by Federal Law No. 16-FZ of 7 February 1995 ‘On Ratification of the Convention on Biological Diversity’.

2. The Russian Federation does not participate in this Convention.

3. Corpus of Legislation of the Russian Federation (1996). 28, art. 3348.

4. Corpus of Legislation of the Russian Federation (2021). 1 (I), art. 11.

5. Corpus of Legislation of the Russian Federation (2011). 48, art. 6724.

6. Corpus of Legislation of the Russian Federation (2018). 49 (VI), art. 7586.

7. Corpus of Legislation of the Russian Federation (2020). 30, art. 4884.

8. Corpus of Legislation of the Russian Federation (1998). 2, art. 219.

9. Corpus of Legislation of the Russian Federation (2021b). 1(I), art. 31.

10. The Russian Federation does not currently participate in this Convention.

References

1. Baker, B. (2016). The ethics of changing the human genome. BioScience, 66(4), 267–273. https://doi.org/10.1093/biosci/biw017

2. Baylis, F. (2017). Human germline genome editing and broad societal consensus. Nature Human Behaviour, 1(6), 1–3. https://doi.org/10.1038/s41562-017-0103

3. Belyaletdinov, R.R. (2018). Biotechnological moral enhancement. Chelovek, (6), 33–38. (In Russ.). https://doi.org/10.31857/S023620070002342-3

4. Chuyko, N. (2011). Main approaches of the regulation of genetically modified organisms in the international practice. Sibirsklii Yuridicheskii Vestnik, (1), 160–165. (In Russ.).

5. Coller, B. S. (2019). Ethics of human genome editing. Annual Review of Medicine, 70, 289–305. https://doi.org/10.1146/annurev-med-112717-094629

6. Doudna, J. A. & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096

7. Ena, J. (2005). Prions: who should worry about them? Archives of Medical Research, 36(6), 622–627. https://doi.org/10.1016/j.arcmed.2005.02.004

8. Gajdaj, E. A. & Gajdaj, D. S. (2019). Genetic variety of laboratory mice and rats: history of occurrence, methods of obtaining and control. Laboratory Animals for Science, (4), 78– 85. (In Russ.). https://doi.org/10.29296/2618723X-2019-04-09

9. Hirakawa, M. P., Krishnakumar, R., Timlin, J. A., Carney, J. P. & Butler, K. S. (2020). Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 40(4), BSR20200127. https://doi.org/10.1042/BSR20200127

10. Kalinina, L. E. (2019). Precautionary principle in the food legislation of the European Union. Ocherki noveishei kameralistiki, (2), 13–15. (In Russ.).

11. Kofiadi, I. A. (2008). Genetic resistance to HIV and AIDS development in the population of Russia and neighboring countries. Diss. Cand. Sci. (Biol.). Available at: https://www.dissercat.com/content/geneticheskaya-ustoichivost-k-zarazheniyu-vich-i-razvitiyu-spid-v-populyatsiyakh-rossii-i-so. (In Russ.).

12. Koplin, J. J. & Savulescu, J. (2019). Time to rethink the law on part-human chimeras. Journal of Law and the Biosciences, 6(1), 37–50. http://doi.org/10.1093/jlb/lsz005

13. Koplin, J. & Wilkinson, D. (2019). How should we treat human–pig chimeras, non-chimeric pigs and other beings of uncertain moral status? Journal of Medical Ethics, 45(7), 457–458. http://doi.org/10.1136/medethics-2019-105644

14. Li, H., Yang, Y., Hong, W., Huang, M., Wu, M. & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), 1–23. https://doi.org/10.1038/s41392-019-0089-y

15. Maeder, M. L. & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/mt.2016.10

16. Maleina, M. N. (2019). The role of legal principles in eliminating and minimizing the risks of the use of genomic technologies. Lex Russica, (8), 121–128. (In Russ.). https://doi.org/10.17803/1729-5920.2019.153.8.121-128

17. Mokhov, A. A. (2017). Precautionary principle in biomedicine. Meditsinskoe pravo, (1), 5–10. (In Russ.).

18. Mokhov, A. A. (2020). ‘Synthetic’ genome and the products obtained therewith as new objects of legal relations. Courier of Kutafin Moscow State Law University (MSAL), (5), 51–59. (In Russ.). https://doi.org/10.17803/2311-5998.2020.69.5.051-059

19. Mokhov, A. A. (2021). Genetic technologies in medicine and biosafety. In: Mokhov, A. A., Mokhov, O. V. & Sushkova, O. V. (eds.). Pravovye osnovy bioėkonomiki i biobezopasnosti [Legal foundations of bioeconomics and biosafety]. Moscow: Prospekt Publ., pp. 216– 222. (In Russ.).

20. Mokhov, A. A., Levuskhin, A. N. & Yavorsky, A. N. (2020). Genome Editing of Human Embryo: Allow or Prohibit? Journal of Advanced Research in Law and Economics, 11(2), 483–490. https://doi.org/10.14505/jarle.v11.2(48).21

21. Mokhov, A. A. & Yavorskiy, A. N. (2019). Combination of private and public interests in legal regulation of genetic technologies. Remedium, (9), 48–51. (In Russ.).

22. Mustafin, R. N. & Khusnutdinova, E. K. (2018). Interrelation of prions with non-coding RNAs. Vavilovskii Zhurnal Genetiki i Selektsii=Vavilov Journal of Genetics and Breeding, 22(4), 415–424. (In Russ.). https://doi.org/10.18699/VJ18.377

23. Ormond, K. E., Mortlock, D. P., Scholes, D. T., Bombard, Y., Brody, L. C., Faucett, W. A. et al. (2017). Human germline genome editing. The American Journal of Human Genetics, 101(2), 167–176. https://doi.org/10.1016/j.ajhg.2017.06.012

24. Palazzo, A. F. & Gregory, T. R. (2014). The case for junk DNA. PLoS genetics, 10(5), e1004351. https://doi.org/10.1371/journal.pgen.1004351

25. Popova, O. V. (2015). Biotechnological design of the natural and artificial: the social aspect. Znanie. Ponimanie. Umenie, (2), 161–171. (In Russ.). https://doi.org/10.17805/zpu.2015.2.17

26. Rassolov, I. M. & Chubukova, S. G. (2019). Intra-industry principles of genetic information processing. Actual Problems of Russian Law, (5), 98–110. (In Russ.). https://doi.org/10.17803/1994-1471.2019.102.5.098-110

27. Rassolov, I. M., Chubukova, S. G., Mokhov, A. A. & Shagieva, R. V. (2020). Genetic information and personal data under conditions of digital transformation. International Journal of Psychosocial Rehabilitation, 24(7), 284–292.

28. Regalado, A. (2019, April 10). Chinese scientists have put human brain genes in monkeys— and yes, they may be smarter. MIT Technology Review. Available at: https://www.technologyreview.com/2019/04/10/136131/chinese-scientists-have-put-human-braingenes-in-monkeysand-yes-they-may-be-smarter/

29. Robakidze, M. (2021, July 26). Human gene was implanted in agricultural plants. Mir 24. Available at: https://mir24.tv/news/16468145/selskohozyaistvennym-rasteniyam-vnedrili-chelovecheskii-gen. (In Russ.).

30. Rudinskiy, F. M. (2006). Nauka prav cheloveka i problemy konstitucionnogo prava [The science of human rights and the problems of constitutional law]. Moscow: Mir Publ. (In Russ.).

31. Savoshchikova, E. V. & Voronina, I. A. (2019). Privacy as a principle of constitutional and legal regulation of biomedicine. Meditsinskoe pravo, (1), 23–28. (In Russ.).

32. Vasenkin, A. V. & Vasilyeva, N. A. (2020). Precautionary principle in NBIC technologies. Eurasian Law Journal, (6), 474–475. (In Russ.).

33. Walters, R. (2010). Eco crime and genetically modified food. Routledge-Cavendish. https://doi.org/10.4324/9780203844151

34. Wells, J. (2011). The myth of junk DNA. Vol. 85. Seattle, WA: Discovery Institute Press. Available at: https://www.discovery.org/m/2019/01/Myth-of-Junk-DNA-Notes.pdf

35. Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., Kimm, L. R., Cheng, Z., Horsman, D. E. et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. The American Journal of Human Genetics, 80(1), 91–104. https://doi.org/10.1086/510560

36. World Health Organization. (2000). WHO infection control guidelines for transmissible spongiform encephalopathies: report of a WHO consultation, Geneva, Switzerland, 23-26 March 1999 (No. WHO/CDS/CSR/APH/2000.3). Available at: https://apps.who.int/iris/handle/10665/66707

37. World Health Organization. (2021). Human genome editing: recommendations. Available at: https://www.who.int/publications/i/item/9789240030381

38. Yavorskiy, A. N. (2021). The history of the development of genetic technologies: a short narrative. In: Mokhov, A. A. & Sushkova, O. V. (eds.). Bioekonomika: doktrina, zakonodatel ʹstvo, praktika [Bioeconomy: doctrine, legislation, practice]. Moscow: Prospekt Publ., pp. 127–152. (In Russ.).

39. Yudin, B. G. (2016). Technoscience and the ‘improvement’ of human beings. Epistemology & Philosophy of Science, 48(2), 18–27. (In Russ.).

40. Zuev, V. A. (2013). Prions – a special class of causative agents of slow infections in humans and animals. RMZh - Russkii Meditsinskii Zhurnal, (30), 1559–1566. (In Russ.). Available at: https://www.rmj.ru/articles/nevrologiya/Priony__osobyy_klass_vozbuditeley_medlennyh_infekciy_cheloveka_i_ghivotnyh/


About the Author

A. A. Mokhov
Kutafin Moscow State Law University (MSAL)
Russian Federation

Head of the Department of Medical Law



Review

For citations:


Mokhov A.A. The Principle of Inviolability of the Human Genome and Information about the Human Genome. Lex Genetica. 2022;1(1):4-19. https://doi.org/10.17803/lexgen-2022-1-1-4-19

Views: 711


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-1639 (Print)
ISSN 3034-1647 (Online)