Preview

Lex Genetica

Advanced search

Ethical Aspects of Creation and Application of Medical Devices Based on Nanorobotics: Legal and Deontological Issues

https://doi.org/10.17803/lexgen-2025-4-2-63-75

Abstract

The article presents a comprehensive analysis of the ethical aspects of the creation, use, and disposal of medical devices based on nanorobotic technologies. Serious legal and deontological issues arising due to the insuf ficiency of existing ethical and legal norms to deal with rapid technological progress in nanomedicine reveal a dangerous regulatory vacuum. Therefore, the development of fundamental ethical principles to govern the activities of all parties involved throughout the life cycle of nanorobotic systems becomes an urgent priority. For manufacturers, such principles include prioritizing the biocompatibility of materials at both molecular and system levels, ensuring control over targeting and device lifecycle predictability, prioritizing patient well-being over commercial interests, an absolute ban on autonomous decision-making by devices, and clear limits on permissible replication. For medical professionals, the key principles concern obtaining informed consent, ensuring continuous monitoring of the patient’s condition, voluntary use of technology, professional responsibility at all stages of application, empathy, and the mandatory possession of appropriate qualifications. Medical organizations should be guided by the principles of institutional responsibility, including maintenance and compliance with standards, quality assurance, data collection and storage, non-discrimination against patients who have opted out of nanorobotic treatments, as well as the protection of the interests of both patients and medical staff. Ethical principles applying to the recycling of medical devices include a prohibition of reuse and fulfilling environmental safety requirements. The development and implementation of a specialized code of ethics to cover the entire life cycle of medical nanorobotic systems will provide a necessary foundation for the subsequent development of adequate legislative regulations that release the enormous potential of nanorobotics to transform healthcare while ensuring the protection of patients and society.

About the Authors

I. R. Begishev
Kazan Innovation University named af ter V.G. Timiryasov
Russian Federation

Ildar R. Begishev, Doctor of Science (Law), Associate Professor, Honored Lawyer of the Republic of Tatarstan, Chief Research Associate, Research Institute of Digital Technologies and Law

Kazan 



A. A. Shutova
Kazan Innovation University named af ter V.G. Timiryasov
Russian Federation

Albina A. Shutova, Candidate of Science (Law), Senior Researcher, Research Institute of Digital Technologies and Law

Kazan 



P. S. Gulyaeva
Kazan Innovation University named af ter V.G. Timiryasov
Russian Federation

Polina S. Gulyaeva, Junior Researcher, Research Institute of Digital Technologies and Law 

Kazan 



References

1. Begishev, I.R. (2021). Draft of a Federal Law “On circulation of robots and their components (modules). Actual Problems of Economics and Law, 15(2), 379–391. (In Russ.).https://doi.org/10.21202/1993-047X.15.2021.2.379-391

2. Gribachev, V. (2010). General principles of designing nanorobots and nanodynamic systems. Components & Technologies, (10), 121–124. (In Russ.).

3. Gulyaeva, P.S. (2022). Quasilegal subjectivity of artificial intelligence: theoretical and legal aspects. MCU Journal of Legal Sciences, (2), 58–69. (In Russ.). https://doi.org/10.25688/2076-9113.2022.46.2.06

4. Gulyaeva, P.S. (2023). Medical nanorobots in the focus of law. Journal of Digital Technologies and Law, 1(1), 89–122. (In Russ. https://doi.org/10.21202/jdtl.2023.4

5. Shutova, A.A. (2024). Criminal-legal protection of medical robotics. Moscow: Prospekt Publ. (In Russ.).

6. Shutova, A.A., Begishev, I.R. (2024). Ethical principles for the creation and application of artificial intelligence technologies in healthcare. Law Enforcement Review, 8(1), 34–43. (In Russ.). https://doi.org/10.52468/2542-1514.2024.8(1).34-43

7. Aramesh, M., Forró, C., Dorwling-Carter, L., Lüchtefeld, I., Schlotter, T., Ihle, S.J., ... Vörös, J. (2019). Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nature Nanotechnology, 14(8), 791–798. https://doi.org/10.1038/s41565-019-0493-z

8. Asimov, I. (1942). Runaround. Astounding Science Fiction, 29(1), 94–103.

9. Astromskis, P. (2018). In critique of RoboLaw: the model of SmartLaw. In: 3rd Conference on Philosophy and Theory of Artificial Intelligence (pp. 231–234). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-96448-5_24

10. Bartkowski, P., Gawiński, F., Pawliszak, Ł. (2022). E-morph as a new adaptive actuator for sof t robotics. IEEE Robotics and Automation Letters, 7(4), 8831–8836. https://doi.org/10.1109/LRA.2022.3189169

11. Chen, S., Wang, Y., Nie, T., Bao, C., Wang, C., Xu, T., ... Tian, H. (2018). An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 140(51), 17992–17998. https://doi.org/10.1021/jacs.8b09580

12. De Ville, K.A. (2008). Law, Regulation and the Medical Use of Nanotechnology. In: Jotterand, F. (Ed.). Emerging Conceptual, Ethical and Policy Issues in Bionanotechnology. Philosophy and Medicine (vol. 101). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8649-6_11

13. Deng, X., Su, Y., Xu, M., Gong, D., Cai, J., Akhter, M., ... Xu, W. (2023). Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosensors and Bioelectronics, 222, 114960. https://doi.org/10.1016/j.bios.2022.114960

14. Diller, E., Sitti, M. (2013). Micro-scale mobile robotics. Foundations and Trends® in Robotics, 2(3), 143–259. https://doi.org/10.1561/2300000023

15. Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L. (2015). Artificial molecular machines. Chemical Reviews, 115(18), 10081–10206. https://doi.org/10.1021/acs.chemrev.5b00146

16. Fortunato, G.M., Batoni, E., Bonatti, A.F., Vozzi, G., De Maria, C. (2022). Surface reconstruction and tissue recognition for robotic-based in situ bioprinting. Bioprinting, 26, e00195. https://doi.org/10.1016/j.bprint.2022.e00195

17. Foulkes, R., Man, E., Thind, J., Yeung, S., Joy, A., Hoskins, C. (2020). The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomaterials science, 8(17), 4653–4664. https://doi.org/10.1039/d0bm00558d

18. Frana, P.L., Klein, M.J. (eds.). (2021). Encyclopedia of artificial intelligence: the past, present, and future of AI. Bloomsbury Publishing USA. https://doi.org/10.5040/9798400614842

19. Fukuda, T., Nakajima, M., Kojima, M. (2010). Micro-Nano robotics and automation system. IFAC Proceedings Volumes, 43(8), 20–25. https://doi.org/10.3182/20100712-3-FR-2020.00005

20. Gardini, L., Heissler, S.M., Arbore, C., Yang, Y., Sellers, J.R., Pavone, F.S., Capitanio, M. (2018). Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nature Communications, 9(1), 2844. https://doi.org/10.1038/s41467-018-05251-z

21. Gellers, J.C. (2020). Rights for Robots: Artificial Intelligence, Animal and Environmental Law. London: Routledge. https://doi.org/10.4324/9780429288159

22. Guillaume-Gentil, O., Potthof f, E., Ossola, D., Franz, C.M., Zambelli, T., Vorholt, J.A. (2014). Forcecontrolled manipulation of single cells: from AFM to FluidFM. Trends in Biotechnology, 32(7), 381–388. https://doi.org/10.1016/j.tibtech.2014.04.008

23. Guix, M., Mayorga-Martinez, C.C., Merkoçi, A. (2014). Nano/micromotors in (bio) chemical science applications. Chemical Reviews, 114(12), 6285–6322. https://doi.org/10.1021/cr400273r

24. Gulyaeva, P.S. (2023). Medical nanorobots in the focus of law. Journal of Digital Technologies and Law, 1(1), 89–122. https://doi.org/10.21202/jdtl.2023.4

25. Hu, Q., Ma, T., Zhang, Q., Wang, J., Yang, Y., Cai, F., Zheng, H. (2021). 3-D acoustic tweezers using a 2-D matrix array with time-multiplexed traps. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(12), 3646–3653.

26. Jamali, H.R., Azadi-Ahmadabadi, G., Asadi, S. (2018). Interdisciplinary relations of converging technologies: Nano-bio-info-cogno (NBIC). Scientometrics, 116, 1055–1073. https://doi.org/10.1007/s11192-018-2776-9

27. Ji, Y., Lin, X., Wu, Z., Wu, Y., Gao, W., He, Q. (2019). Macroscale chemotaxis from a swarm of bacteria‐ mimicking nanoswimmers. Angewandte Chemie, 131(35), 12328–12333. https://doi.org/10.1002/anie.201907733

28. Kai, K. (2012). Nanotechnology and medical robotics; legal and ethical responsibility. Waseda Bulletin of Comparative Law, 30, 1–6.

29. Kuijpers, L., van Laar, T., Janissen, R., Dekker, N.H. (2022). Characterizing single-molecule dynamics of viral RNA-dependent RNA polymerases with multiplexed magnetic tweezers. STAR Protocols, 3(3), 101606. https://doi.org/10.1016/j.xpro.2022.101606

30. Li, M., Xi, N., Wang, Y., Liu, L. (2019). Advances in atomic force microscopy for single-cell analysis. Nano Research, 12, 703–718. https://doi.org/10.1007/s12274-018-2260-0

31. Li, M., Xi, N., Wang, Y., Liu, L. (2020). Progress in nanorobotics for advancing biomedicine. IEEE Transactions on Biomedical Engineering, 68(1), 130–147. https://doi.org/10.1109/TBME.2020.2990380

32. Li, X., Liu, C., Chen, S., Wang, Y., Cheng, S. H., Sun, D. (2017). In vivo manipulation of single biological cells with an optical tweezers-based manipulator and a disturbance compensation controller. IEEE Transactions on Robotics, 33(5), 1200–1212. https://doi.org/10.1109/TRO.2017.2718554

33. Liu, R., Zhao, G.D., Zou, W.B., Zhang, X.P., Xu, S., Wang, Y., ... Song, Y.Y. (2022). Single-port robot-assisted hepatic lef t lateral sectionectomy using the da Vinci SP® system: A case report. Intelligent Surgery, 2, 6–9. https://doi.org/10.1016/j.isurg.2022.02.002

34. Marks, J.L., Cyr, S.K. (2018). Government regulation of nanorobots in medicine: How the FDA and PTO handle these new technologies. The Journal of Robotics, Artificial Intelligence & Law, 1(4), 217–230.

35. Mulgan, T. (2019). Corporate agency and possible futures. Journal of Business Ethics, 154, 901–916. https://doi.org/10.1007/s10551-018-3887-1

36. Muscariello, L., Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Cafiero, G., Barbarisi, A. (2005). A critical overview of ESEM applications in the biological field. Journal of Cellular Physiology, 205(3), 328– 334. https://doi.org/10.1002/jcp.20444

37. Naidoo, S. (2021). Biocompatibility Testing of Medical Devices. Burlington: Arcler Press.

38. Nambu, T. (2016). Legal regulations and public policies for next-generation robots in Japan. Ai & Society, 31, 483–500. https://doi.org/10.1007/s00146-015-0628-1

39. Neuman, K.C., Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505. https://doi.org/10.1038/nmeth.1218

40. Norasi, H., Tetteh, E., Law, K.E., Ponnala, S., Hallbeck, M.S., Tollefson, M. (2022). Intraoperative workload during robotic radical prostatectomy: comparison between multi-port da Vinci Xi and single port da Vinci SP robots. Applied Ergonomics, 104, 103826. https://doi.org/10.1016/j.apergo.2022.103826

41. Palmerini, E., Bertolini, A., Battaglia, F., Koops, B.J., Carnevale, A., Salvini, P. (2016). RoboLaw: Towards a European framework for robotics regulation. Robotics and Autonomous Systems, 86, 78–85. https://doi.org/10.1016/j.robot.2016.08.026

42. Qian, J., Ren, J., Liu, Y., Lam, R.H., Lee, J.E.Y. (2020). Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate. In: 2020 IEEE SENSORS (pp. 1–4). IEEE. https://doi.org/10.1109/sensors47125.2020.9278717

43. Qiao, W., Zhou, L., Zhao, Z., Liu, D., Li, S., An, J., ... Wang, J. (2022). A self-powered vector motion sensor for smart robotics and personalized medical rehabilitation. Nano Energy, 104, 107936. https://doi.org/10.1016/j.nanoen.2022.107936

44. Rodríguez-Gómez, F.D., Monferrer, D., Penon, O., Rivera-Gil, P. (2025). Regulatory pathways and guidelines for nanotechnology-enabled health products: a comparative review of EU and US frameworks. Frontiers in Medicine, 12, 1544393. https://doi.org/10.3389/fmed.2025.1544393

45. Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297–302. https://doi.org/10.1038/nature04586

46. Shi, C., Luu, D.K., Yang, Q., Liu, J., Chen, J., Ru, C., ... Sun, Y. (2016). Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsystems & Nanoengineering, 2, 16024. https://doi.org/10.1038/micronano.2016.24

47. Suulker, C., Skach, S., Althoefer, K. (2022). Sof t robotic fabric actuator with elastic bands for high force and bending performance in hand exoskeletons. IEEE Robotics and Automation Letters, 7(4), 10621–10627. https://doi.org/10.1109/LRA.2022.3194883

48. Sweeney, A. (2020). Incorporating NBIC social/ethical issues into STEM teacher education programmes. Canada-Caribbean Institute Journal, 1(1). https://journals.library.brocku.ca/index.php/cancarib/article/view/2369

49. Taherkhani, S., Mohammadi, M., Daoud, J., Martel, S., Tabrizian, M. (2014). Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 8(5), 5049–5060. https://doi.org/10.1021/nn5011304

50. Vale, D., El-Sharif, A., Ali, M. (2022). Explainable artificial intelligence (XAI) post-hoc explainability methods: Risks and limitations in non-discrimination law. AI and Ethics, 2, 815–826. https://doi.org/10.1007/s43681-022-00142-y

51. Villa, K., Pumera, M. (2019). Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chemical Society Reviews, 48(19), 4966–4978. https://doi.org/10.1039/C9CS00090A

52. Wan, M., Liu, Z., Li, T., Chen, H., Wang, Q., Chen, T., ... Mao, C. (2021). Zwitterion‐based hydrogen sulfide nanomotors induce multiple acidosis in tumor cells by destroying tumor metabolic symbiosis. Angewandte Chemie International Edition, 60(29), 16139–16148. https://doi.org/10.1002/anie.202104304

53. Wang, H., Pumera, M. (2015). Fabrication of micro/nanoscale motors. Chemical Reviews, 115(16), 8704– 8735. https://doi.org/10.1021/acs.chemrev.5b00047

54. Wang, J., Gao, W. (2012). Nano/microscale motors: biomedical opportunities and challenges. ACS Nano, 6(7), 5745-5751. https://doi.org/10.1021/nn3028997

55. Wasti, S., Lee, I.H., Kim, S., Lee, J.H., Kim, H. (2023). Ethical and legal challenges in nanomedical innovations: a scoping review. Frontiers in Genetics, 14, 1163392. https://doi.org/10.3389/fgene.2023.1163392

56. Xu, X., Saw, P.E., Tao, W., Li, Y., Ji, X., Bhasin, S., ... Farokhzad, O.C. (2017). ROS‐responsive polyprodrug nanoparticles for triggered drug delivery and ef fective cancer therapy. Advanced Materials, 29(33), 1700141. https://doi.org/10.1002/adma.201700141

57. You, M., Chen, C., Xu, L., Mou, F., Guan, J. (2018). Intelligent micro/nanomotors with taxis. Accounts of Chemical Research, 51(12), 3006–3014. https://doi.org/10.1021/acs.accounts.8b00291

58. Yuan, K., Af toni, A., Çobanoğlu, Ö. (2020). The ef fect of problem-based learning model and blended learning model to metacognitive awareness as a reflection towards a new normal era. Jurnal Pendidikan Teknologi Dan Kejuruan, 26(2), 183–188. https://doi.org/10.21831/jptk.v26i2.32783


Review

For citations:


Begishev I.R., Shutova A.A., Gulyaeva P.S. Ethical Aspects of Creation and Application of Medical Devices Based on Nanorobotics: Legal and Deontological Issues. Lex Genetica. 2025;4(2):63-75. (In Russ.) https://doi.org/10.17803/lexgen-2025-4-2-63-75

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-1639 (Print)
ISSN 3034-1647 (Online)